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Preface

The purpose of this study was to determine if the DRIVE

model is sensitive to varying demand rates by base. This

study was designed to facilitate further analysis of DRIVE's

forecasting method.

DRIVE uses a four-quarter moving average of worldwide

demands to predict base demands. The current DRIVE model was

used to forecast base demands for the third and fourth

quarters of 1987. Then the DRIVE algorithm was changed to

predict base demands by using an 18 month moving average of

base demands. The quarterly depot repair lists DRIVE produced

using both forecasting methods indicated that DRIVE is

sensitive to varying demand rates by base.

This research would not have been possible without the

help from others. I wish to thank my faculty advisor, Lt Col

Bruce Christensen, for his encouragement and assistance in

times of need. I also wish to thank Richard Moore, Barb

Wieland, and Bob McKorrick of the AFLC Programs Assessment

Division for their guidance and cooperation in performing

this research. Vinally, I wish to thank my wf for her

understanding and concern throughout this research effort.

Alan J. Closson
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AFIT/GLM/LSM/88S-10

Abstract

The purpose of this .*muy was to determine the effect of

using base specific demand rates in the DRIVE model. There

were two research objectives: (1) Determine if DRIVE's repair

priorities significantly change due to demand variations.

(2) Determine how DRIVE's repair priorities change by using

base specific demand rates instead of worldwide demand rates.

This study compared the quarterly repair lists DRIVE

recommended using worldwide demands versus base demands for

the F-16A. Several depot repair hour constraints were used

to see how the repair lists changed given different manhour

constraints. The research revealed that using base specific

demands (D028) in the DRIVE model instead of worldwide demands

(D041) significantly changes the quarterly depot repair

priorities. For the third and fourth quarters of 1987, the

D028 forecasts recommended less quantities of the critical

LRUs for repair but did not recommend less quantities of SRUs

for repair across all of the critical SRUs. The D028

forecasts also required fewer repair hours to satisfy the

optimal number of LRUs DRIVE recommended for repair. ) This may

be a result of incomplete D028 data; the bases with no D028

demands may have reduced the repair requirement beyond the

/ 'vii
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level their actual demands would have recommended. The

repair quantities of LRUs and SRUs based on the D028 demand

rates also vary less than the D041 repair quantities from one

quarter to the next. This indicates that the D028 18 month

moving average forecasts are less variable than DRIVE's four-

quarter moving average forecast.

There is considerable variation between D028 base demand

rates; however, the D028 demand rate at a base remains

relatively stable between quarters. The D028 18 month moving

average appears to dampen the actual base demand rates.

These observations are consistent across all of the LRUs and

SRUs at each of the 21 F-16 bases. Since the worldwide

demand rates are an average of all of the base's demands, the

requirements of the bases with unusually high demands are not

met, while the bases with low demands can not Justify the

requirements that the worldwide demand rates set for them.

By taking an average of the highly different base demand

rates, the DRIVE model does not properly allocate requirements

according to each base's demand history.

viii



AN ALTERNATIVE FORECASTING METHOD FOR DRIVE

I. Introduction

Readiness and sustainability have received increased

attention by military planners over the past two decades.

Recent budget restrictions have increased the importance of

relating resources to readiness. Readiness is defined as

being prepared for action or being prompt to react. Abell

defines military readiness as the ability of military forces

to perform their mission (Abell, 1981:16). The Air Force is

concerned with how responsive a military force is and how

sustainable it is over time. An example of the former is an

air-defense force's capability to respond quickly to an

aerial attack. An example of the latter is the effectiveness

of tactical fighters over an extended interdictive campaign

(Abell, 1981:16).

The problem of relating resources to readiness is not

new. At the May 1974 Logistics Research Conference, then

Deputy Chief of Naval Operations (Logistics) Vice Admiral

Walter D. Gaddis, USN, clearly addressed the problem.

An example is our need for a simple, usable
definition of material readiness of Naval forces, a
means of measuring it, and some perfectly definite
input-output relationships. We need to be able to link
resource inputs, and this means money, to any of the
numerous potential outputs, and these mean military
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applications. We need to be able to predict not only
how much readiness measure will change, but also when it
will change, as a result of changes in inputs (Monahan,
1981:11).

In the 1978 Defense Authorization Act, Congress specified

the need for relating resources to operational capability.

The act required future DOD budgets to include data that

projects the effect requested appropriations will have on

readiness (Abell, 1981:15).

This poses several problems for the Department of

Defense. First, there are no historical data that reflect the

impact of resources on readiness. Second, it is difficult

to understand dynamic interactions of the allocation,

expenditure, and commitment of resources and their resulting

effect on readiness (Abell, 1981:15). Third, until now there

have been no means of relating specific resources to changes

in combat capability.

Motivation

The Air Force has spent much time and many resources

analyzing how resource requirements relate to combat

capability. Part of this research involves integrating the

logistics support system to wartime environments. A Project

Air Force study conducted by the Rand Corporation in 1984 -

Enhancing the Integration and Responsiveness of the Logistics

Support System to Meet Wartime and Peacetime Uncertainties -

was concerned with how to best counter the major environmental
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and demand rate uncertainties that complicate logistics

operations and resource allocation in peacetime and wartime.

The research identified the nature and source of uncertainties

and how logistic resources could be coordinated to overcome

them (Rand, 1984).

Rand's Project Air Force involves several other studies

that have investigated "potentially serious problems that

underlie current estimates of the wartime demand for logistics

support" (Rand, 1984:2). The Driving Inputs and Assumptions

of Stockage/Assessment Models (Rand, 1982b) discovered

unexpectedly high levels of demand variability from base to

base and at any given base across time. Rand has accumulated

much information on additional complexities arising from enemy

attacks on our airbases in Sortie Production in Dynamic

Wartime Environments (Rand, 1982a). These studies have given

us important information on the characteristics, causes, and

implications of uncertainties in our logistics system. They

also indicate that the logistics support system must be able

to adapt to uncertainties and varying demand rates. The

flexibility and responsiveness of the logistics support

system needs to be increased to better utilize the assets we

have (Rand, 1984:3).

Initiatives along these lines, emerging from Rand's

Project Air Force work, are called CLOUT (Coupling Logistics

to Operations to meet Uncertainties and the Threat). The

CLOUT initiatives involve enhancing logistics systems in the
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theater, at the depots, and within command and control

systems. They also include better ways to identify and react

to varying demand in capability assessment models and spares

requirements determinations (Rand, 1986:26). Although these

initiatives require several changes in the logistic support

system, by reallocating support resources in response to

changes in projected force needs logistics decision makers

should be able to mitigate the effects of unexpected demands

(Rand, 1984:3).

What changes are needed to provide more flexible

support? Two promising options include expanding lateral

resupply and lateral repair among theater locations. Also,

closer coupling of depot repair to operational forces

significantly increases aircraft availability (Rand, 1986:26).

However, these changes would require new policies that

integrate the logistics support system and the combat forces.

The Rand Corporation has developed a model called

DRIVE (Distribution and Repair in Variable Environments),

which will facilitate the integration of the logistic support

system and the combat forces. DRIVE prioritizes depot repair

and distribution of the repaired components based on the

current worldwide asset position and flying requirements.

Its purpose is to ensure that the repair and distribution of

recoverable components yields the best support available.

DRIVE accomplishes this by sequencing repair and distribution

of assets to maximize the probability of achieving aircraft

4



availability goals given the expected flying requirements.

DRIVE also considers the priority of each weapon system in

terms of each unit's aircraft availability goal. It then

determines specific depot repair priorities considering

available repair resources (CLOUT Plans and Programs, 1987).

The DRIVE algorithm uses an four-quarter moving average

to determine the expected demands at each base. The moving

average is based on the worldwide average of base demands.

The worldwide demand rate per 1000 flying hours is multiplied

by the number of flying hours projected at each base to

determine each base's demands. Each base's demands are based

on the assumption that demand varies linearly with the number

of flying hours. DRIVE uses this demand rate as the expected

rate at each base and then computes a variance to mean ratio

(Sherbrooke A/B formulation) to predict demand variability.

The total demands and the variance to mean ratio are used to

develop a negative binomial probability distribution at each

base. DRIVE uses the demand distribution and the current

asset position to compute the probability that a base will

meet its availability goal. DRIVE then determines the

increase in availability expected by adding a serviceable

asset at a given base. It is through these calculations that

DRIVE determines how many assets to repair and where the

assets should be sent to get the greatest increase in aircraft

availability (CLOUT Plans and Programs, 1987).
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DRIVE prioritizes repair using a marginal analysis

technique; it looks for the highest Increase in availability

for the hours needed to repair the unit. The increase in

availabilty is divided by the total standard repair hours to

determine the benefit to cost ratio. DRIVE continues to

select the item that provides the highest payoff until all of

the available goals are met, all possible repairs are

performed, or it meets a given repair constraint. Until the

development of the DRIVE model, there was no way to directly

tie the impact of specific logistics actions to aircraft

availability. DRIVE allows managers at all levels to

prioritize support actions to provide the greatest increase in

aircraft availability with available resources (CLOUT Plans

and Programs, 1987).

Research Objective

It is important to understand how DRIVE forecasts demand

rates in order to prioritize repair and distribution. We

also need to know if the repair and distribution priorities

dramatically change with the varying demand rates found

throughout the Air Force.

The objective of this research is to determine the

effect on DRIVE's repair priorities of using actual base

demand rates to predict base demand instead of an average of

worldwide demand rates. The individual base demand rates

should produce a more accurate forecast for each base than a

8



forecast based on a worldwide average of every base's demand.

More accurate forecasts can help to improve logistics support

to weapon systems and better relate weapon system expenditures

to combat capability. Further research could identify other

actions that may improve DRIVE's performance such as adjusting

excessive demand variability due to random occurrences.

Research Questions

In order to improve our understanding of demand

variations and their effect on DRIVE's repair and distribution

priorities this research will investigate the following

questions.

1. How sensitive is DRIVE to varying demand rates?

2. How does using base specific demand rates affect

DRIVE's repair priorities?

Limitations

This research was unable to determine the effect on aircraft

availability of using base specific demand rates in the DRIVE

model because no wartime demand rates for the P-16A bases in

the DRIVE data base are known. If one of these bases were to

deploy for 30 days under a wartime scenario, as in a Coronet

Warrior exercise, their wartime demand rates would be

available and the effect on aircraft availability could be

determined.
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This research was also unable to determine if using base

specific demand rates in DRIVE more accurately predicted base

demands than DRIVE's worldwide demand rates, because AFLC does

not maintain a history of actual base demand data.

Overview

The following chapter investigates demand prediction

techniques since DRIVE uses each base's predicted demand

distribution to prioritize repair and allocate spares. A

variety of forecasting methods will be reviewed along with

recent research which analyzes the different methods.

Chapter III presents the methodology used to determine

the effect of demand variations on DRIVE's repair priorities.

Chapter IV analyzes the results of the study and Chapter V

presents the conclusions of the research. Suggested areas of

further research are also presented.

8



II. Literature Review

Introduction

The purpose of this literature review is to investigate

different methods of forecasting item demand that could be

used in the DRIVE model instead of its current four-quarter

moving average of worldwide demands. An application of a

Bayesian method, a moving average, and several exponential

smoothing techniques will be presented. Then studies of

demand prediction techniques will be reviewed. The literature

review will aid in the selection of an appropriate forecasting

technique to be used in this research.

Bayesian Inference

Zellner distinguishes the Bayesian approach to inference

from other approaches because it uses numerical probabilities

to represent degrees of confidence that we have in

propositions about empirical phenomena rather than a

probability frequency (Zellner, 1971:9-10). He continues:

The degree of reasonable belief that we have in a
proposition . depends on the state of our current
information .... Therefore, in general a probability
representing a degree of reasonable belief that we have
in a proposition is always a conditional probability,
conditional on our present state of information. As our
information relating to a particular proposition changes,
we revise its probability or our belief in it. This
process of revising probabilities associated with

9



propositions in the face of new information is the
essence of learning from expereience (Zellner, 1971:9-
10).

Bayes theorem combines a prior probability associated

with a particular proposition (based on our initial informa-

tion, from previous data and studies, theoretical

considerations, and casual observation) and a probability

density function (the likelihood function) to arrive at the

posterior probability (Zellner, 1971:10). The posterior

probability depends on both the prior information and the new

sample information. Bayes theorem is used to revise our

initial prior probability to reflect the information in our

new data.

The posterior probability density function can be used

to make probability statements about a parameter; for example,

to compute the probability that the parameter lies between two

specific values. As more sample information becomes known, it

will have greater influence on the posterior probability

density function which, in turn, will become more concentrated

about the true value of the parameter (Zellner, 1971:11).

Feeney and Sherbrooke, in their 1964 study, document an

application of the Bayesian technique whereby an item's

observed demand is compared to other items in the system to

improve upon the knowledge about the item. The Bayesian

approach makes possible the estimation of the probability that

the item's mean demand is at various levels of demand instead

of trying to give a point estimate of the item's true mean

10



demand. The probabilities are then used to analyze the risks

and potential payoffs for maintaining various stock levels

(Feeney and Sherbrooke, 1965:v).

Moving Average

The moving average technique averages the actual demand

for the last n time periods to derive the next period's

forecast. The number of time periods to include in the

forecast should be large enough to cancel random fluctuations

but few enough so that irrelevant data from the past is

discarded. It is called a moving average because the average

changes over time with the addition of new data and the

deletion of old data. As recent data becomes available for

each time period, it is included in the forecast and the

oldest data is excluded from the forecast. The following

equation is a mathematical representation of a moving average:

n

Yt = (Yt-1 + Yt-2 + ' + Y t-n) Yt-i/n
i=1

where

Y = forecast demand for period t,
t

Y = actual demand in period t - i,
t-i

n = number of time periods included in moving average

11



The number of time periods to use in the average is

purely subjective, depending on the particular situation, and

should be determined by experimentation. If too few time

periods are used, the moving average forecast values

fluctuate more than they probably should with only random

variations in demand. When too many time periods are-used,

the moving average is too stable and fails to detect current

trends. In general, moving averages dampen random demand

variations and respond to trends with a delay (Tersine,

1988:46).

Exponential Smoothing

Exponential Smoothing is a type of moving average where

past data are not given equal weight. Recent data is

weighted more heavily than older data. The magnitude of the

smoothing constant determines the level of weight assigned

to recent data. The smoothing constant (a) lies between zero

and one, where small values of a smooth recent trends and

large values of a emphasize recent demand conditions

(Tersine, 1988:53).

A major advantage of exponential smoothing is that it

does not require the user to keep a long history of data.

Only the previous forecast needs to be retained to include

the effect of all past data. The simplest exponential

smoothing technique estimates the magnitude of the data and

filters out random demand variations. It predicts demand for

12



the next period by adding the previous forecast to a fraction

of the difference between the actual demand from the last

period and its forecast demand.

Current forecast level

= (previous forecast) + a(previous actual - previous

forecast)

= a(previous actual) + (1-a)(previous forecast),

= aY + (1 - a)Y (2)
t-1 t-1

where the previous actual demand is labeled Y%-1 ' and Yt-I is

the previous forecast (Terslne, 1988:53).

Comparison of Forecasting Techniques

In 1984, Sherbrooke analyzed worldwide base level demands

from a sample of 1030 recoverable items over 16 quarters.

Also included in this study were F-16 data on 810 recoverable

items at two bases from the Abell, et al., study in 1982.

The demands were by item during five six-month periods.

Sherbrooke found that demand in adjoining time periods

was not independent; many items had mean demands that were not

constant. He reported that a model that agrees with the data

he analyzed must not assume demand in different periods is

independent. The correlation between demands in two

different time periods decreased as the time interval between

the periods increased. He concluded that exponential

13



smoothing was a better predictor of mean demand than a moving

average. Because of time-varying means, exponential smoothing

with a constant of .4 on quarterly data reduced squared error

39 percent and reduced average absolute error 12 percent. The

exponential smoothing forecasts were better than an eight-

quarter moving average for all of the future time periods

tested, from one to eight quarters away (Sherbrooke,

1984:23).

In 1987, the Logistics Management Institute completed one

of the most comprehensive demaDd prediction studies

undertaken for the Air Force in recent years. The objectives

of this study were to see if the recommendations from

Sherbrooke's 1984 study for predicting demand were consistent

across weapon systems, and to use a more meaningful measure

than squared error and average absolute error. Also, this

study evaluated the forecasting methods on end item

availability since availability is the Air Force's objective

in allocating funds to spare parts.

The experiment consisted of 17 demand prediction

techniques which fall into four categories: Bayesian, moving

average, exponential smoothing, and second-order exponential

smoothing. The second-order exponential smoothing was

called "Holt linear estimation" which is described in

Makridakis and Hibon (1979). It is an exponential smoothing

method similar to that described earlier but it includes a

second parameter to estimate any trend in the data. In this

14



study, Sherbrooke set the first parameter, alpha, at 0.4 and

the second parameter, beta, at 0.5, after some trial and

error.

The recommendations from the 1984 study did appear to

hold consistently across the C-5, A-1O, and F-16 weapon

systems as represented in 16 quarters of world-wide demand

data. Two of the major conclusions were:

1. Demand prediction techniques should allocate more
weight to more recent data, because mean demand rates
change over time.

2. Exponential smoothing is consistently the best
technique of those tested for estimating mean
demand. With quarterly data, a smoothing constant of
about .4 appears best (Sherbrooke, 1987:17).

Sherbrooke also reports "less definitive" findings

(they may depend on the techniques used in the study). Two

of the findings are:

1. Bayesian techniques used in this study were good but
not the best. The achieved availabilities were
fairly high in most cases, but the predicted
availabilities were almost always too high.

2. A different exponential smoothing constant for low-
demand items did not improve predictions. There had
been some suspicion that a lower exponential
smoothing constant, equivalent to a longer history
period, might improve predictions for very low-demand
items (Sherbrooke, 1987:18).

The most significant conclusion of these studies that

applies to this research is that demand in different periods

is not independent - mean demand rates change over time. The

correlation between demands in two different time periods

decreased as the time interval between the periods increased.

This implies a forecasting method that gives more weight to

15



recent data (i.e. exponential smoothing) should provide a

better estimate of demand than a moving average which gives

equal weight to the number of time periods included in the

demand prediction.

The table below shows how exponential smoothing

constants affect the weight given to the demands of previous

periods (Tersine, 1988:55). A low smoothing constant

allocates weight more evenly and smooths recent trend, whereas

a large smoothing constant gives recent values more weight.

When a = 0.1, the three recent periods account for only 0.1

+ 0.09 + 0.081 = 0.271 or 27.1 percent of the predicted

value. However, when a = 0.4, the three recent periods

account for 0.4 + 0.24 + 0.144 = .784 or 78.4 percent of the

forecast.

TABLE 1

Exponential Smoothing Constants

Exponential Period Weight
Smoothing
Constant k=1 k=2 k=3 k=4

a a(l-a) a(l-a) a(l-a)

0 0 0 0 0

0.1 0.1 .09 .081 .0729
0.2 0.2 .16 .128 .1024
0.3 0.3 .21 .147 .1029
0.4 0.4 .24 .144 .0864
0.5 0.5 .25 .125 .0625
0.6 0.6 .24 .096 .0384
0.7 0.7 .21 .063 .0189
0.8 0.8 .16 .032 .0064
0.9 0.9 .09 .009 .0009
1.0 1.0 0 0 0

16



The number of time periods included in a moving average

also affects the allocation of weight to recent data. In

fact, there is a relationship between the moving average

method and simple exponential smoothing. The stability of a

moving average increases as the number of time periods in the

moving average increases, while the stability of exponentially

smoothed forecasts increases as a decreases. If a is the

exponential smoothing constant, the corresponding number of

periods in the moving average is (Tersine, 1988:56) :

n = (2 - a)/a (3)

Thus, a smoothed model with a = 0.4 includes the same number

of periods as a moving average model with n = 4.

Another interesting finding is that a lower exponential

smoothing constant (0.1 was used in the 1987 study) did not

improve predictions. In his 1980 study, Patterson stated

that different exponential smoothing constants for different

groups of items may improve demand predictions. He suggested

further research to consider grouping homogenous items on the

basis of item activity (high, medium, and low volume) or item

essentiality (Patterson, 1980:20). This approach seems

appealing in that it is similar to the Bayesian method that

compares an item's observed demand to other items in the

system. It would seem prudent to use a lower smoothing

constant for low volume items and a higher smoothing constant

17



for higher volume items if the low volume items have more

stable demand patterns.

Another exponential smoothing technique that deserves

further review is adaptive exponential smoothing. In his

article "A Comparsion of Adaptive Forecasting Techniques,"

Whybark (1972a) compared four approaches to adaptive

forecasting, each representing a different way of modifying

exponential smoothing to adapt to changes in the demand

pattern (Whybark, 1972a:13-26). The adaptive models devise

means for providing low smoothing constants when demand is

stable and high smoothing constants when demand is shifting.

The approaches Whybark discussed used the performance of the

models as the basis for determining whether to change the

smoothing constant.

Whybark classified adaptive smoothing models along two

dimensions: 1) the frequency of evaluation of the forecasting

performance, and 2) how the smoothing constant is determined

once the evaluation indicates it should be changed. Some

models use a fixed value of the smoothing constant for a

specified number of periods and then evaluate the performance

of the model (periodic evaluation). The model's performance

determines whether a different smoothing constant should be

used for the next set of periods. Other models evaluate

forecasting performance every period to see if the smoothing

constant is appropriate (continuous evaluation).

18



The second dimension of the model classification is

based upon how the smoothing constant is changed once the

evaluation indicates it should be changed. Some models

restrict the amount of change that can be made while other

models leave the change unrestricted. This provides a total

of four types of models along the two dimensions which are

illustrated in Table 2 (Whybark, 1972a:15).

TABLE 2

Classification of Adaptive Smoothing Models

Smoothing Periodic Evaluation Continuous Evaluation

Constant

Restricted Roberts and Reed, 1969 Whybark, 1972

Unrestricted Eilon and Elmaleh, 1970 Trigg and Leach, 1960

Whybark tested the four models in a simulated inventory

system. A total of 400 periods were generated of which the

first 200 were used to initialize the models, and the

remaining 200 were used to compare the models. The pertinent

conclusions resultirg from this study were:

1. The addition of an adaptive mechanism to the
smoothing model provided positive improvement in its
performance. Adapting the smoothing constant reduced
both the forecast error and total costs.

2. The continuous evaluation models exhibited slightly
better performance than the periodic evaluation
models on total costs and consistently better
performance on error standard deviation.
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3. Adaptive forecasting techniques warrant consideration
in logistics systems where low cost, reliable, short-
term forecasts are required (Whybark, 1972b:25).

In his 1985 review of exponential smoothing models,

Everette Gardner discussed other studies of adaptive

forecasts that have resulted in less optimistic conclusions

(Gardner, 1985). He listed several modifications to the

adaptive forecasts that have been suggested to provide more

stability in the predictions. One proposed alternative to

adaptive parameters is to manually refit the forecasting

model at regular intervals, using only recent data to derive

the parameter values (i.e., Eilon and Elmaleh, 1970). Another

alternative is to refit the model immediately after one of the

tracking signals indicates the need to do so (Buffa, 1975).

With either strategy, the refitting can be done automatically

if one is willing to specify a set of permissible smoothing

constant values (Gardner, 1985:21). Gardner stated that

Eilon and Elmaleh as well as Buffa recorded worthwhile

improvements in accuracy compared to models fitted only once

to the early part of the series.

In 1980, Gardner and Dannenbring tested the performance

of nine exponential smoothing models using a simulated sample

of 9000 time series. The time series were simulated with a

variety of noise levels and characteristics (constant mean,

trends, and turning points). The purpose of the study was to

identify guidelines to aid in the selection of an appropriate
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forecasting model under different circumstances. The

researchers proposed the following conclusions:

1. Adaptive models tend to overreact to random fluctuations
in the time series. The forecasts are unstable even when
the mean demand is stable. This instability offsets the
advantage adaptive models have in responding to sudden
shifts in demand.

2. Nonadaptive, trend adjusted models perform well under a
variety of circumstances. They can react as well as the
adaptive models to sudden shifts in demand with an
appropriate smoothing constant.

3. A smoothing constant between .01 and .10 is recommended
when the mean is stable and there is no apparent trend.
Higher values could be used to hedge against the
development of trends, however, trend adjusted models
perform well even if there is no trend in the series.

4. When there is a definite trend, Holt's model performs
well with an alpha between .01 and .10 and a beta at .5
or .10 (Gardner and Dannenbring, 1980:382).

Although the more sophisticated prediction models may

improve forecasting accuracy, no convincing advantage has

been demonstrated as yet. In 1982, seven forecasting experts

compared 24 time series methods for a sample of 1001 series

(Makridakis et al., 1982). The purpose of the study was to

evaluate major extrapolation methods and look at the different

factors that affected forecasting accuracy. Most of the

methods were automatic and therefore eliminated subjective

adjustments from affecting the accuracy of the models. This

study was important to forecasting users not just because it

was very comprehensive, but because it indicated that the

most accurate forecasting method varies depending on the

forecasting situation. The results indicated that forecasting

accuracy can be improved considerably by using different
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methods depending on the type of data (yearly, quarterly,

monthly), the type of series (micro, macro, etc.), and the

time horizon of forecasting. With monthly and micro data,

deseasonalized single exponential smoothing performed very

well; whereas, with yearly and quarterly data, it did not

perform as well as other methods. The researchers concluded

that simple models performed relatively well in comparison

with statistically sophisticated models when there is

considerable randomness in the data. The researchers

suggested that the sophisticated methods may extrapolate too

much trend and lead to overestimation, and this is the reason

why simple models perform relatively well in comparison.

In addition to using different forecasting methods under

different circumstances, managers need to consider the

assumptions their forecasts are based upon. In 1988, the Air

Force Logistics Management Center (AFLMC) investigated.the

assumption that demand varies linearly with flying hours.

This is important to the Air Force because forecasts derived

from worldwide demands assume that demand varies linearly

with the number of flying hours. The DRIVE model makes this

assumption in its forecasts and wartime requirements for each

Air Force unit are determined by multiplying the worldwide

demand rate per 1000 flying hours by the number of flying

hours for each unit. The researchers used a sample of 176

items consumed at the following units: Little Rock (76

aircraft), Pope (48 aircraft), Clark (16 aircraft), and
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Little Rock ANG (6 aircraft). The results of the study

indicated that demand does not vary linearly with the number

of aircraft a base possesses.

The researchers also took a random sample of 30 items

consumed by the following units: Clark (16 aircraft), McCord

(16 aircraft), Van Nuys (16 aircraft), and Willow Grove (9

aircraft). Next, the researchers took a random sample of 34

items consumed by the following units: Dobbins (24 aircraft),

New Orleans (21 aircraft), Minot (18 aircraft), and McCord

(16 aircraft). The study revealed that the linear

relationship between demand and the number of aircraft

possessed was stronger for similar sized units (AFLMC, 1988).

This research supports other studies that indicate there is

little evidence to support the assumption of linearity

(Hodges, 1985 and Lockette, 1984).

Summary

This literature review has investigated different

methods of forecasting item demand. A variety of studies

comparing demand prediction techniques were presented, some

of which identified refinements to basic forecasting methods.

Depending on the research and the data used, different

methods produced better results. The literature review

revealed that an appropriate forecasting method for this

research study should be robust due to the time varying means

many Air Force items have and due to the uncertainties of
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operating in a wartime environment. Since the DRIVE model

will be used in wartime to produce short term repair and

distribution priorities, the forecasting method should also

produce accurate short term forecasts.

The literature review suggested that certain forecasting

methods may be inappropriate for use in this research. The

Bayesian forecasting method does not seem appropriate for Air

Force data because many of the items have time-varying means.

The posterior probability density function may not become

more concentrated about the "true" value of the parameter

because of the changing means. The literature review also

suggested that adaptive forecasting methods tend to provide

unstable forecasts.

Sherbrooke's studies recommended that the forecasting

method should give recent data more weight because Air Force

items have time-varying means. He concluded that exponential

smoothing was a better predictor of mean demand than a moving

average. Sherbrooke also concluded that with quarterly

worldwide data, exponential smoothing with a constant of 0.4

appeared best. Although the 1982 reveiw of forecasting

methods was not based on Air Force data, the researchers

concluded that with monthly and micro data, deseasonalized

single exponential smoothing performed very well. The

researchers also concluded that simple models performed

relatively well in comparison with statistically sophisticated

models when there is considerable randomness in the data.
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The AFLMC report indicated that demand does not vary linearly

with the number of aircraft a base possesses. This suggests

that wartime requirements should not be determined by

multiplying a base's flying hours by the worldwide demand

rate.
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III. MethodolgSZ

Introduction

This chapter details the research methodology used to

determine the effect of demand variations on DRIVE's repair

priorities. Because there are high levels of demand

variability from base to base, (Rand, 1982b) using a worldwide

average of every base's demand does not give an accurate

picture of each base's current demand patterns. Both the

DRIVE model and the D041 use worldwide demand rates to

determine expected demands at each base. However, these

forecasts are based on the assumption that demand varies

linearly with flying hours. The AFLMC study supported other

studies that indicated that demand does not vary linearly with

flying hours. Instead of a forecast based on a worldwide

average of every base's demand, this study determined the

effect of using each base's demand history to forecast its

demand rate. By using each base's demands, we should get a

more accurate estimate of its current demand patterns.

Although the literature review suggested that exponential

smoothing may provide a more accurate short term forecast,

this study did not use exponential smoothing because AFLC does

not muintain a history of actual base demand rates to generate

an exponentially smoothed forecast. Therefore, an 18 month

moving average of each base's demand was taken from the D028

Central Requirements Leveling data base to forecast base
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demand. This chapter presents a summary of the DRIVE data

base as well as the assumptions used in the DRIVE model and in

this study.

DRIVE Data Base

The F-16 Avionics Item Managers at the Ogden Air

Logistics Center (OO-ALC) have used the DRIVE model since

October 1986 to prioritize depot repair and to allocate depot

spares in order to fill existing base requisitions. This is

in contrast with allocating spares according to the Uniform

Military Movement and Issue Priority System (UMMIPS). The

information in the DRIVE data base has been used by the Air

Force Logistics Command to compare the aircraft availability

rates resulting from DRIVE's repair priorities and

distribution of depot spares with the aircraft availability

rates resulting from the Uniform Military Movement and Issue

Priority System. The aircraft availability rates derived from

the DRIVE data base were based on demand forecasts from the

DRIVE model which predicts demands at each base using a four-

quarter moving average of worldwide demands.

The avionic equipment in the DRIVE data base is repaired

with one of the four F-16 Avionic Intermediate System's test

sets. The DRIVE data base includes 32 line replacement units

(LRUs), 233 shop replacement units (SRUs), and 21 F-16

bases. The bases are listed in Appendix A and the LRUs are

listed in Appendix B. Air Force wide, LRUs and SRUs accounted
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for approximately 54 percent or 2 billion dollars of the 1987

Depot Programmed Equipment Maintenance (DPEM) budget (Air

Force Logistics Command, 1987).

Twelve of the 21 bases in the DRIVE data base are combat

coded and therefore have wartime flying hour commitments in

addition to peacetime flying hours. Although the bases and

their missions are diverse, the DRIVE model uses common

assumptions across all operating locations.

Assumptions

The prototype implementation of DRIVE includes the

following assumptions:

1. Expected demand for an item and a variance to
mean ratio form a negative binomial probability
distribution which is used to determine the
probability of demands on the depot.

2. At base level, cannibalizations are done whenever
possible for LRUs and SRUs to consolidate shortages
on the fewest number of aircraft.

3. There is no base repair of SRUs.
4. Every LRU repaired at base level requires SRUs to be

replaced.
5. Standard repair hours for LRUs and SRUs are valid

measures of resource consumption for individual
repair actions.

6. Units with a common Stock Record Account Number
(SRAN) can share assets (CLOUT Plans and Programs,
1987).

Research Methods

The objective of this study was to determine the effects

of demand variations on DRIVE's repair priorities. Two

different base demand forecasting methods were used in the
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DRIVE model to forecast quarterly base demands. The

different forecasting methods were DRIVE's four-quarter moving

average forecast of worldwide base demands, and an 18 month

moving average forecast of each base's demand. The 18 month

moving average forecast of base demands is currently used in

the Recoverable-Central Leveling System (D028) to provide

centrally computed stock levels to Air Force users for

selected repair cycle items.

The comparison of the forecasting methods was

accomplished by using DRIVE's current forecasting method to

predict base demands and then by changing the DRIVE algorithm

to forecast demand by using an 18 month moving average

forecast of each base's demand. The DRIVE model was used to

forecast quarterly demands at each base for the third and

fourth quarters of 1987. DRIVE used these predicted demands

to produce a list of items for depot repair during the

quarter given the number of repair hours available. The

number of LRU repair hours available during 1987 was 14,000;

however, recent budget restrictions reduced the amount of

repair available to 10,000 hours. This study used LRU repair

constraints of 1,000 through 15,000 hours at 1,000 hour

intervals to observe how the repair lists changed given the

different quarterly repair hour constraints. A repair list

with no repair constraint was also used to see the optimal

number of LRUs and SRUs that PRIVE recommended for repair

during the quarter. These quarterly repair lists DRIVE
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produced from the two forecasting methods were used to

determine the effect of demand variations on DRIVE's repair

priorities.

The different forecasting methods were evaluated using a

paired difference t statistic. The quarterly LRU repair

quantities for the forecasting methods were paired and the

differences were analyzed. The paired difference t-test

determined if the quarterly repair quantities for the

forecasting methods were significantly different using an

alpha of 0.05. This implies that only five-percent of the

time would the null hypothesis, stating the repair quantities

are equal, be rejected when it should not have been rejected.

In addition to the t-test, graphs of DRIVE's recommended

repair quantities per repair hour for the four critical F-16A

LRUs and their SRUs were used to evaluate the forecasting

methods. The DRIVE model has consistently identified these

four LRUs as critical items since August 1987. The graphs

show how the number of LRUs and SRUs to repair changes given

different repair constraints.

Summary

This chapter has given an overview of the DRIVE data

base and has detailed the assumptions made in the DRIVE

model. This research compared the priority lists DRIVE

produced from the two different base demand forecasting
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methods to see how sensitive DRIVE is to demand variations.

The quarterly LRU repair quantities were evaluated using the

paired t statistic to determine if the forecasting methods

produced different repair quantities. Graphs of the repair

quantities DRIVE recommended per depot repair hour for the

four critical F-16A LRUs and their SRUs were also used to

evaluate the forecasting methods. The graphs indicate how the

number of LRUs and SRUs to repair change given different

repair constraints. This chapter outlined the research

methods used in this study to provide a background for the

next chapter's analysis.

31



IV. Analysis

Introduction

This chapter analyzes the effects of demand variations on

DRIVE's repair priorities by comparing the quarterly repair

lists DRIVE produced from the two different base demand

forecasting methods. Graphs of the repair quantities DRIVE

recommended per depot repair hour for the four critical F-16A

LRUs and their SRUs were also used to evaluate the

forecasting methods.

Results

Table 3 lists the number of LRUs DRIVE recommended for

repair for each of the four F-16 avionics test stands for the

third and fourth quarters of 1987. The repair lists were

based on the current amount of depot repair available, 10,000

hours. The differences between the four-quarter moving

average of worldwide demands (D041) and the 18 month moving

average of base specific demands (D028) were analyzed using

the paired t statistic which is explained in Appendix C. The

t-test revealed that at an alpha of 0.05 the null hypothesis,

stating the repair quantities are equal, should be rejected.

The two forecasting methods produced significantly different

repair priorities for both the third and fourth quarters of
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1987. The differences in the repair lists are solely due to

the different demand rates the two forecasting methods provide.

TABLE 3.
LRU Repairs by Shop

COMPUTER INERTIAL STAND
Sep Sep Dec Dec
D041 D028 D028 D041

NSN Description Quan Quan Quan Quan

1270-01-045-3976WF FIRE COMP 2 21 55 1
6605-01-046-3533WF FC NAV PAN 91 98 73 102

6605-01-087-6645WF INU 74DAO 102 74 74 78
6610-01-039-7817WF ACCELER AS 2 4 0 1
6610-01-123-0046WF ECA 14FBO 6 0 0 12
6615-01-042-7834WF GYRO 6 61 66 8
6615-01-127-3160WF PANEL 7 17 12 1
6615-01-129-7445WF PANEL TRIM 18 36 55 31
6615-01-161-1592WF FLT CTL CO 4 5 4 3
6615-01-172-0136WF FLCC 11 6 1 12

DISPLAY STAND

1270-01-094-6872WF RCP 74AHO 6 74 74 11
1270-01-122-9955WF HUD ELECT 0 11 20 3
5841-01-096-3945WF DISP 74EAO 12 74 74 17
5841-017096-4833WF RDR E74EBO 5 74 74 14

PNEUMATICS and PROCESSORS STAND

1270-01-133-6494-F DIG SIG PR 1 18 24 6
1270-01-209-9982WF COMPUTER 7 4 7 7 4
1280-01-080-0203WF CRIU 75DEO 13 75 75 16
1280-01-109-1499WF MRIU 75DB 34 75 75 25
1280-01-121-6879WF PANEL STOR 16 2 2 18
1280-01-240-8595WF CIU 8 17 4 12
5999-01-080-3978WF JRIU 75DDO 10 75 75 10
6610-01-089-1018WF COMPUTR CA 3 13 31 19
6615-01-042-7835WF PNE ONSOR 1 0 0 1

RADIO FREQUENCY STAND

1270-01-093-2174WF ANTENNA RA 42 0 0 66
1270-01-093-2256-F RADAR XMTR 14 48 37 17
1270-01-102-2962VF LOW PWR RF 15 12 9 28
1270-01-102-2963WF LOW PWR RF 15 9 9 19
1270-01-102-2965WF LOW PWR RF 28 9 9 41.
1270-01-102-2966WF LOW PWR RF 15 13 12 19
1270-01-146-4630WF ANTENNA 1 0 0 1
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Table 4 shows the difference in the repair quantities

and the absolute value of the repair differences for the July

through September, and October through December 1987 quarters.

TABLE 4.
Comparison of LRU Repairs

Sep D028 Sep D041 Dec D028 Dec D041
Quan Quan Diff Quan Quan Diff

21 2 19 55 1 54
98 91 7 73 102 -29
74 102 -28 74 78 -4
4 2 2 0 1 -1
0 6 -6 0 12 -12

61 6 55 66 8 58
17 7 10 12 1 11
36 18 18 55 31 24
5 4 1 4 3 1
6 11 -5 1 12 -11

74 6 68 74 11 63
11 0 11 20 3 17
74 12 62 74 17 57
74 5 69 74 14 60
18 1 17 24 6 18
7 4 3 7 4 3

75 13 62 75 16 59
75 34 41 75 25 50
2 16 -14 2 18 -16
17 8 9 4 12 -8
75 10 65 75 10 65
13 3 10 31 19 12
0 1 -1 0 1 -1
0 42 -42 0 66 -66

48 14 34 37 17 20
12 15 -3 9 28 -19
9 15 -6 9 19 -10
9 28 -19 9 41 -32

13 15 -2 12 19 -7
0 1 -1 0 1 -1

436 355

Absolute Difference 789 Absolute Difference 690

For the July through September 1987 quarter, the D028

forecasts resulted in DRIVE recommending 436 fewer LRUs for
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repair. For the October through December 1987 quarter, the

D028 forecasts led DRIVE to recommend 355 fewer LRUs for

repair. DRIVE did not recommend repairing less quantities of

all the LRUs. For the July through September quarter, the

absolute value of the differences was 690, and for the

October through December quarter, the absolute value of the

differences was 789. The two different forecasting methods

changed the repair priorities for each of the 32 avionic

LRUs. Unfortunately, the impact on aircraft availability of

these changes could not be determined since none of the

wartime demand rates for these bases are known. It could

also not be determined which forecasting method was more

accurate because AFLC does not maintain a history of actual

base demand rates. However, we should achieve a more

accurate picture of each base's demand patterns by using each

base's demand rates instead of an average of every base's

demands, since demand varies significantly from base to base.

Actual base demand rates need to be retained to accurately

assess the impact on aircraft availability of using base

demand rates. The D028 data used in this research appeared

to be incomplete since some bases had no D028 demand history

for some of the LRUs.

Table 5 lists the D028 demand rates of critical LRUs

for the non combat coded F-16A bases. There are two quarters

of D028 demand rates; each quarterly rate represents an 18

month moving average of each base's demand rate.
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Table 5. D028 Demand Rates per 100 Flying Hours

September 1987 December 1987
Demand Demand

NSN Base Rate NSN Base Rate

1270011022962 FB2823 0.0187 1270011022962 FB2823 0.0188
1270011022962 FB4814 0.0942 1270011022962 FB4814 0.0918
1270011022962 FB4887 0.0293 1270011022962 FB4887 0. 0572
1270011022962 FB6022 0.0167 1270011022962. FB6022 0.0159
1270011022962 FB6091 0.0333 1270011022962 FB6091 0. 0443
1270011022962 FB6261 0.0055 1270011022962 FB6261 0.0222
1270011022963 FB2805 0.0080 1270011022963 FB2805 0.0112
1270011022963 FB2823 0.0285 1270011022963 FB2823 0.0296
1270011022963 FB4814 0.1308 1270011022963 FB4814 0. 1351
1270011022963 FB4887 0.0205 1270011022963 FB4887 0.0217
1270011022963 FB6022 0.0369 1270011022963 FB6022 0. 0425
1270011022963 FB6091 0.0307 1270011022963 FB6091 0.0286
1270011022963 FB6151 0.1050 1270011022963 FB6151 0.1050
1270011022963 FB6261 0.1090 1270011022963 FB6261 0.1202
1270011022965 FB2805 0.0134 1270011022965 FB2805 0.0135
1270011022965 FB2823 0.0405 1270011022965 FB2823 0.0576
1270011022965 FB4814 0.2068 1270011022965 FB4814 0.2081
1270011022965 FB4887 0.0997 1270011022965 FB4887 0.1226
1270011022965 FB6022 0.0186 1270011022965 FB6022 0.0224
1270011022965 FB6091 0.0060 1270011022965 FB6091 0.0222
1270011022965 FB6151 0.0450 1270011022965 FB6151 0.0450
1270011022965 FB6261 0.0553 1270011022965 FB6261 0.0259
1270011022966 FB2823 0.0129 1270011022966 FB2823 0.0109
1270011022966 FB4814 0.2225 1270011022966 FB4814 0.2324
1270011022966 FB4887 0.0352 1270011022966 FB4887 0.0326
1270011022966 FB6022 0.0068 1270011022966 FB6022 0. 0091
1270011022966 FB6261 0.0055 1270011022966 FB6261 0.0277
6605010463533 FB2805 0.0052 6605010463533 FB2805 0. 0052
6605010463533 FB2823 0.0361 6605010463533 FB2823 0.0434

6605010463533 FB4814 0.3315 6605010463533 FB4814 0.3297
6605010463533 FB4887 0.2251 6605010463533 FB4887 0.2042
6605010463533 FB6022 0.0554 6605010463533 FB6022 0. 0505
6605010463533 FB6091 0.0241 6605010463533 FB6091 0.0480

6605010463533 FB6151 0.0670 6605010463533 FB6151 0.0781
6605010463533 FB6261 0.0927 6605010463533 FB6261 0.1046

6605010876645 FB2805 0.0426 6605010876645 FB2805 0. 0426

6605010876645 FB2823 0.0727 6605010876645 FB2823 0.0531
6605010876645 FB4814 0.5659 6605010876645 FB4814 0.6107

6605010876645 FB4887 0.3136 6605010876645 FB4887 0.3433
6605010876645 FB6022 0.0837 6605010876645 FB6022 0.0984

6605010876645 FB6091 0.0908 6605010876645 FB6091 0.1319

6605010876645 FB6151 0.0585 6605010876645 FB6151 0.0807
6605010876645 FB6261 0.1020 6605010876645 FB6261 0.1681
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There is considerable variation between bases for both

the third and fourth quarters of 1987; however, the demand

rate at a base remains relatively stable between the quarters.

The D028 18 month moving average appears to dampen the actual

base demand rates. The D028 demand rates reveal that some

bases demands are more than ten times higher than other base's

demands. These observations are consistent across all of the

LRUs and SRUs at each of the 21 F-16 bases. Since the

worldwide demand rates are an average of all of the base's

demands, the requirements of the bases with unusually high

demands are not met, while the bases with low demands can not

Justify the requirements that the worldwide demand rates set

for them. By taking an average of the highly different base

demand rates, the DRIVE model does not properly allocate

requirements according to each base's demands.

DRIVE sequences the repair and distribution of assets to

maximize the probablity of each base achieving its aircraft

availability goals. Using worldwide demand rates to determine

the expected demands at each base does not support the needs

of each base according to its recent demand history. In

peacetime, DRIVE may better support the needs of each base

by using each base's demand history to forecast demands.

During war, when the bases may operate in a totally different

environment, an average of several bases' demands may be more

appropriate.
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Figures.1 through 16 illustrate graphs of the repair

quantities resulting from the two forecasting methods for the

four critical F-16A LRUs and their SRUs. The graphs show

that for the third and fourth quarters of 1987, the D028

forecasts recommended fewer quantities of LRU repairs but not

fewer SRU repairs across all of the critical SRUs. The D028

forecasts also required fewer repair hours to satisfy the

optimal number of LRUs and SRUs DRIVE recommended for repair.

It is interesting to note that all of the LRU and SRU

repair quantities, based on the D028 forecasts, could be

satisfied with 14,000 repair hours, the number of hours

available for depot repair in 1987. Many of the LRU and SRU

repairs based on the D041 forecasts would not be met with

14,000 hours of repair. The D028 LRU and SRU repair

quantities reach the predicted optimal number of repairs using

less repair hours. This is most likely a result of incomplete

D028 data; the bases with no D028 demands may have reduced the

repair requirement beyond the level their actual demands would

have recommended. Another possible explanation is that the

unusually high demand rates for an item at one base may

increase the worldwide requirements beyond the level predicted

by each base's demands. Figures 1 through 16 also show that

the repair quantities of LRUs and SRUs, based on the D041

demand rates, vary more than the D028 repair quantities from

one quarter to the next. This occurs for three of the four

critical LRUs and their SRUs. This indicates that the D028 18
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month moving average forecasts are less variable than the

four-quarter moving average forecast DRIVE uses. This reseach

could not determine which forecast was more accurate because a

history of the actual base demand rates was not maintained.
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Figure 1. Jul - Sep 1987 Repair of LRU 1270-01-102-2962
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Figure 2. Jul -Sep 1987 Repair of LRU 1280-01-240-8595
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Repair Quantity per Repair Hours
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Figure 3. Jul - Sep 1987 Repair of LRU 8605-01-046-3533
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Figure 4. Jul - Sep 1987 Repair of LRU 6605-01-087-6645
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Figure 5. Jul - Sep 1987 SRU Repairs of 1270-01-102-2962
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Figure 7. Jul - Sep 1987 SRU Repairs of 6605-01-046-3533
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Figure 9. Oct -Dec 1987 Repair of LRU 1270-01-102-2962
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Figure 10. Oct -Dec 1987 Repair of LRU 1280-01-240-8595
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Figure 11. Oct -Dec 1987 Repair of LRU 6605-01-046-3533
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Figure 12. Oct - Dec 1987 Repair of LRU 6605-01-087-6645
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Figure 13. Oct - Dec 1987 SRU Repairs of 1270-01-102-2962
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Figure 14. Oct - Dec 1987 SRU Repairs of 1280-01-240-8595
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Figure 15. Oct - Dec 19R7 SRU Repairs of 6605-01-046-3533
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Figure 16. Oct - Dec 1987 SRU Repairs of 6605-01-087-6645
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Summary

This chapter revealed that the D028 produced significantly

different repair priorities than DRIVE's current forecasting

method. The D028 forecasts required fewer repair hours to

satisfy the number of LRUs DRIVE recommended for repair. This

is most likely a result of incomplete D028 data; the bases

with no D028 demands may have reduced the repair requirement

beyond the level their actual demands would have recommended.

The repair quantities of LRUs and SRUs, based on the D028

demand rates, also vary less than the D041 repair quantities

from one quarter to the next. This indicates that the 18

month moving average forecasts are less variable than DRIVE's

four-quarter moving average forecast. The analysis also

revealed considerable variation between D028 base demand

rates; however, the D028 demand rate at a base remains

relatively stable between quarters. The D028 18 month moving

average appears to dampen the actual base demand rates. The

next chapter presents the conclusions of the research and

makes recommendations for futher studies.
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V. Conclusions and Recommendations

Conclusions

Using base specific demands (D028) in the DRIVE model

instead of worldwide demands (D041) to forecast base demands

significantly changes the quarterly depot repair priorities.

For the third and fourth quarters of 1987, the D028 forecasts

recommended less quantities of the critical LRUs for repair

but did not recommend less quantities of SRUs for repair

across all of the critical SRUs. The D028 forecasts also

required fewer repair hours to satisfy the optimal number of

LRUs DRIVE recommended for repair. This is most likely a

result of incomplete D028 data; the bases with no D028 demands

may have reduced the repair requirement beyond the level their

actual demands would have recommended. Another possible

explanation is that the unusually high demand rate for an item

at one base appears to increase the worldwide requirements

beyond the level predicted by each base's demands. The

repair quantities of LRUs and SRUs, based on the D028 demand

rates, also vary less than the D041 repair quantities from one

quarter to the next. This indicates that the D028 18 month

moving average forecasts are less variable than the four-

quarter moving average forecast DRIVE uses.

There is considerable variation between D028 base demand

rates; however, the D028 demand rate at a base remains

relatively stable between quarters. The D028 18 month moving
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average appears to dampen the actual base demand rates.

These observations are consistent across all of the LRUs and

SRUs at each of the 21 F-16 bases. Since demand varies

significantly from base to base, we should get a more

accurate picture of each base's demand patterns by using each

base's demand rates instead of an average of every base's

demands. By taking an average of every base's demands, the

DRIVE model does not meet the requirements of the bases with

unusually high demands, while the bases with low demands can

not justify the requirements that worldwide demand rates set

for them. In peacetime, DRIVE may better support the needs of

each base by using each base's demand history to forecast

demands. During war, when the bases may operate in a totally

different environment, an average of several bases' demands

may be more appropriate.

Recommendations

This research determined that the DRIVE model is

sensitive to the varying demand rates found throughout the Air

Force. It was concluded that because demand varies

significantly from base to base, DRIVE may better support the

needs of each base by using each base's demand history to

forecast base demands during peacetime. The following

recommendations are intended to aid future studies of DRIVE's

forecasting method.
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1. AFLC needs to retain a history of actual base demands.

2. Units that have deployed for 30 days, as in a Coronet

Warrior exercise, should be included in the DRIVE

data base so actual wartime demand rates could be

used in DRIVE to assess the effect on aircraft

availability of using the D028 to forecast base

demands.

3. Future studies should analyze the volatility of the

D028 and the D041 forecasts to determine if demand

rates need to be reviewed before running the DRIVE

model.

4. Single exponential smoothing of base demand rates

in DRIVE should be considered in lieu of the D028

and D041 forecasts.

5. Pooling demands of bases with approximately the same

number of flying hours should be considered as an

alternative forecasting method for DRIVE.

Actual base demand rates need to be retained to

accurately assess the impact on aircraft availability of using

base demand rates. The D028 data used in this research

appeared to be incomplete since some bases had no D028 demand

history for some of the LRUs.

Units that have deployed for 30 days, as in a Coronet

Warrior exercise, should be included in the DRIVE data base so

actual wart!me demand rates could be used in DRIVE to assess

the effect on aircraft availability of using the D028 to
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forecast base demands. Actual wartime demand rates were not

available for any of the bases in the DRIVE data base during

this research.

Future studies should analyze the volatility of the D028

and the D041 forecasts to determine if demand rates need to

be reviewed before running the DRIVE model. Volatility of

demands needs to oe considered since large variations in

repair quantities may be costly and make planning difficult.

A base with excessive demand variability, due to random

occurrences, may need their demand rate adjusted so DRIVE

does not overcompensate them during the next quarter. This

research revealed that repair quantities based on D041 demand

rates are more volatile than D028 repair quantities. However,

this researcher was only able to obtain two quarters of the 18

month averaged demands; the volatility of demand needs to be

analyzed over several quarters.

Single exponential smoothing of base demand rates

in the DRIVE model should be considered in lieu of the D028

and D041 forecasts. The literature review revealed that

exponential smoothing was a better predictor of quarterly

demands than a moving average, because Air Force items have

time-varying means. DRIVE may need to use a different

smoothing constant depending on the forecasting horizon for

which it is being used. Sherbrooke recommended a smoothing

constant of 0.4 for quarterly demands; however, a lower
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smoothing constant may be necessary for short term, (i.e., two

weeks), forecasts.

Another alternative forecasting method would be to pool

demands of bases with approximately the same number of flying

hours. The AFLMC study reported that demands vary less for

bases with a similar number of flying hours. This forecasting

approach would not rely heavily on the assumption that demand

varies linearly with flying hours.

This chapter summarized the conclusions and made

recommendations for future studies. More studies of the DRIVE

model need to be performed in order to identify other actions

which may further improve its logistics decisions and combat

capability.
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Appendix A: Units Included in the DRIVE Data Base

Organi ation Base Account

1. AFFTC EDWARDS FB2805
2. ADTGE EGLIN FB2823
3. 363TFW SHAW FB4803
4. 56TTV MACDILL FB4814
5. 58TTW LUKE FB4887
6. 86TFV RANSTEIN FB5612
7. 5OTFW HAHN FB5620
8. 52TFW SPANGDA{LEI( FB5621
9. TTFS TUCSON FB6022
10. FIS159 JACKSONVILLE FB6091

1. 127TFFS MCCONNELL FB6151
12. FIS186 GREAT FALLS FB6261
13. 419/388 HILL FB2027
14. 31TFW HOMESTEAD FB4829
15. 347TFW MOODY FB4830
16. 474/57 NELL IS FB4852
17. 401TFW TORREJON FB5573
18. 169TFG MCENTIRE FB6401
19. 149TFG KELLY FB6432
20. 158TFG BURLINGTON FB6451
21. PLSG KADENA FB5222



Appendix B: Line Replacement Units in the DRIVE Data Base

Expanded Fire Control Computer
Radar Antenna
Radar Transmitter
Radar Control Panel
Hud Set, Pilots Display Unit
RF Unit Low Power
RF Unit Low Power
RF Unit Low Power
RF Unit Low Power
Hud, Electronic Unit
Processor, Digital Signal GPI
Radar Antenna
Radar Computer
Remote Interface Unit, Conventional SNS
Remote Interface Unit, Missle SMS
Stores Control Panel
Expanded Central Interface Unit, Stores
Indicator, Radar/E-O Display Unit
Electronics Assembly Unit
Remote Interface Unit, Jettison/Release S3S
Fire Control Navigation Panel
Internal Navigation Unit
Accelerometer Assembly, Normal/Lateral
Computer, Central Air Data
Electronic Component Assembly
Rate Gyro Assembly, Flight Control
Pneumatic Sensor
Recorder Assembly, FLCS Data
Panel Assembly, Flight Control
Panel Assembly, Manual Trim
Flight Control Computer Assembly
Flight Control Computer Assembly
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Appendix C: Paired Difference Test of an Hypothesis

The paired difference test is used to make an inference

about the difference between two population means. In this

study, the null hypothesis was that the mean quarterly repair

quantities, using forecasting method one and two, were equal.

The alternative hypothesis was that the repair quantities were

different. The quarterly repair quantities were paired and

the difference between the repair quantities from the two

forecasting methods were analyzed. The differences in the

quarterly repair quantities were regarded as a random sample

of all quarterly differences. This sample was used to make an

inference about the mean of the population of differences.

Thus, the test was (McClave and Benson, 1985:363):

H : uI1 - u2 = 0 Ha: uI - u 2 0

The test statistic was a one-sample t statistic since a

single sample of differences was analyzed. The one-sample t

statistic is calculated as follows: (McClave and Benson,

1985:362)

t= Xd/S/d (N 1d

where

Xd = Sample mean of differences

Sd = Sample standard deviation of differences

Nd = Number of differences
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The following assumptions were made in calculating the t

statistic:

1. The population of differences in quarterly repair

quantities are approximately normally distributed.

2. The sample differences are randomly selected from a

population of differences.

The paired difference statistic was used to remove the

variability in quarterly repair quantities so the difference

between population means could be analyzed. The differencing

removed the variability due to the dimension (each quarter) on

which the observations were paired. This is an example of a

randomized block experiment, where the removal of the

variability due to quarterly differences is called blocking

(McClave and Benson, 1985:364).
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